A PTAS for minimum d-hop connected dominating set in growth-bounded graphs

نویسندگان

  • Xiaofeng Gao
  • Wei Wang
  • Zhao Zhang
  • Shiwei Zhu
  • Weili Wu
چکیده

In this paper, we design the first polynomial time approximation scheme for d-hop connected dominating set (d-CDS) problem in growth-bounded graphs, which is a general type of graphs including unit disk graph, unit ball graph, etc. Such graphs can represent majority types of existing wireless networks. Our algorithm does not need geometric representation (e.g., specifying the positions of each node in the plane) beforehand. The main strategy is clustering partition. We select the d-CDS for each subset separately, union them together, and then connect the induced graph of this set. We also provide detailed performance and complexity analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hop Roman Domination in Trees

‎Let $G=(V,E)$ be a graph‎. ‎A subset $Ssubset V$ is a hop dominating set‎‎if every vertex outside $S$ is at distance two from a vertex of‎‎$S$‎. ‎A hop dominating set $S$ which induces a connected subgraph‎ ‎is called a connected hop dominating set of $G$‎. ‎The‎‎connected hop domination number of $G$‎, ‎$ gamma_{ch}(G)$,‎‎‎ ‎is the minimum cardinality of a connected hop‎‎dominating set of $G$...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...

متن کامل

Approximating minimum independent dominating sets in wireless networks

We present the first polynomial-time approximation scheme (PTAS) for the Minimum Independent Dominating Set problem in graphs of polynomially bounded growth. Graphs of bounded growth are used to characterize wireless communication networks, and this class of graph includes many models known from the literature, e.g. (Quasi) Unit Disk Graphs. An independent dominating set is a dominating set in ...

متن کامل

Algorithm and Hardness Results for Outer-connected Dominating Set in Graphs

A set D ⊆ V of a graph G = (V,E) is called an outer-connected dominating set of G if for all v ∈ V , |NG[v] ∩ D| ≥ 1, and the induced subgraph of G on V \D is connected. The Minimum Outer-connected Domination problem is to find an outer-connected dominating set of minimum cardinality of the input graph G. Given a positive integer k and a graph G = (V,E), the Outer-connected Domination Decision ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010